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COMPACT COMPLEX SUBMANIFOLDS IMMERSED IN
COMPLEX PROJECTIVE SPACES

SHUKICHI TANNO

0. Introduction

J. Simons [17], H. B. Lawson [9], and{S. S. Chern-M. do: Carmo-S.
Kobayashi {6], etc. studied minimal submanifolds of spheres. One of the
beautiful results is as follows : Let M be an n-dimensional compact submanifold
minimally immersed in a unit sphere $**? of dimension n 4+ p, and let §
denote the square of the length of the second fundamental form. Then

©.1) f{[(z - ;)s ~ n]S*l >0

holds, where *1 denotes the volume element of M. Since the scalar curvature
R of M is given by R = n(n — 1) — §, (0.1) can be rewritten as an integral
inequality concerning the scalar curvature. The classification of M with
S = n(2 — 1/p) was given in [6], [9].

With respect to the complex version of (0.1), K. Ogiue [12] obtained an
inequality, which was applied to scalar curvature and holomorphic pinchings
in [14]. In the present paper, we generalize these results.

Let CP™*9 be a complex projective space of complex dimension m + g with
the Fubini-Study metric of constant holomorphic sectional curvature 1.

Theorem A. Let M be a compact complex submanifold of complex dimen-
sion m immersed in CP™*4, and assume that the scalar curvature R of M with
respect to the induced Kihlerian metric satisfies

0.2) R>mim+ 1) —4im+2).

(1) If the inequality in (0.2) holds at some point of M, then M is imbedded
as a projective subspace CP™ in CP™*4-

(2) If the equality in (0.2) holds on M, then m = 1 and M is imbedded
as a complex quadric CQ" in some CP*? in CP'*4,

Applying Theorem A to holomorphic or Riemannian pinchings, we have

Theorem B. Let M be a compact complex submanifold of complex dimen-
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sion m immersed in CP™*% and assume that the holomorphic sectional
curvature K(X,JX) of M with respect to the induced Kihlerian structure
satisfies

m+42

(0.3) KX, JX) > 1 — forg>2,
om?®

(0.3) KXJX)>1~M+t2 forg=1
6m

for any tangent vector X.

(1) If the inequality in (0.3) and (0.3 holds for some X at some point of
M, then M is imbedded as a projective subspace CP™ in CP™*4.

(2) If the equality in (0.3) and (0.3) holds on M, then m = 1 and M is
imbedded as a complex quadric CQ' C CP* < CP'*1,

Theorem C. Let M be a compact complex hypersurface immersed in
CP™* m > 2. If the sectional curvature K(X,Y) of M with respect to the
induced Kiihlerian metric satisfies

1 _m+ 2
©.4) K(X,Y) > —4-(1 - ) ,

then M is imbedded as a projective hypersurface CP™ in CP™*!.

If a compact complex submanifold M is imbedded in CP™*¢, then by Chow’s
theorem M is algebraic. K. Nomizu and B. Smyth [11], K. Nomizu [10], and
K. Ogiue [16] studied imbedded (or nonsingular) submanifolds and, as a
special case, compact nonsingular complex curves in CP™*¢. In §6, we
generalize some of their theorems to the case of immersed complex curves in
CpP*e,

In §7 we give some remarks. Throughout this paper all manifolds are
assumed to be connected.

1. Preliminaries

To obtain the Laplacian of the second fundamental form for immersion of
Kihlerian manifolds, we first consider a submanifold M of real dimension »
minimally immersed in an (n + p)-dimensional locally symmetric Riemannian
manifold N’, and use the same notations as those in {6] by S. S. Chern-M.

do Carmo-S. Kobayashi. Let ¢, ---,¢,., be a local field of orthonormal
frames in N’ such that, restricted to M, the vectors ¢, - - -, e, are tangent to
Mande,,,, ---,e,., are normal to M. It is known that

Z_haij-/lhaij = Z (4Ka$kih‘5jkhaij - Kﬂkﬁkhzijhﬂij)

a,t,J 8,87,k
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+ 2 Q@Khuheghe; + 2K pheuhey)

(1 _1) ayi, fokyl
- ; Z ‘s (haikhﬁjk - hajkh'gik)(h“ilh'gjl — h"jlh'su)
a,8,4,1,k,
s § . lhaijhaklhﬁijhﬁkl ’

where 1 < i,j, k1< n+1<a B<Ln+p h%’s denote the second
fundamental forms, 4h°;;’s denote their Laplacians, and K<,’s denote the
components of the curvature tensor of N’ with respect to the above frames
(cf. [6, (2.23)]).

Now let CP™*? be a complex projective space with the Fubini-Study metric
of constant holomorphic sectional curvature 1, and M be a compact complex
submanifold of complex dimension m immersed in CP™*4. As is well known,
M is minimal in CP™*?, We denote the complex structure tensor by J and
the Kéhlerian metric of CP™*% by g. M has the induced K#hlerian structure
tensor (J, g) denoted by the same letters. On CP™*9, we have

(1°2) KABCD = %(5440581) - 5AD530 + JACJBD - JA.D]BC + ZJAB‘ICD) ’
where J,p = X, 84c9%, and 1 < 4,B,C,D<n+p=2(m+ qg) for n =
2m, p = 2q. ‘

We can assume that our local field of orthonormal frames is of J-basis such
that, restricted to M, (en) = (e,, €., = Je,, €,,€,., = Je,), where we use
the following convension on the ranges of indices:

1<A,B,C,D<n+p=2m+ q ;
1Lrs,t<m; 1Sl,1,k,lSn=2m§
n+l<absn+gqg; n+l<a,fyr<n+p=2m+q;

and r* =m <+ r, a* = g + a. Such a local field of orthonbrmal frames is
said to be adapted.

Substituting (1.2) into (1.1), we have (cf. K. Ogiue [12])

(1.3) Zz‘jhuijdhaij =7 a,szi J(Zk: hehfyy — ZL: B hoe )
_ 5-2- . lhaijhaklhﬁijhﬁkl + zlf(m +2) Z.(haij)z .
8220755 &ty d

By noticing that ] J;;4%, = h**,, and 3 J;;h%, = — 3] he,,J,, a direct
calculation gives (cf. K. Ogiue [16])

(1.4 — 5 (D il — DR = =8 3 Rkt

@858,k a,b,8, 7,5k,

By w4 and w4; we denote the dual of ¢, and the connection forms on CP™*4,
Since J is parallel (J43 ; = 0), we have
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ST oWl =dly + X wiJC — 3wl =0

By putting A =i and B = 8, the above equation becomes > w®,J*; — 3 w’,J¢;
= 0. Because w*, = 3 A°,,w/ and w*, = —w’*,, we get

(1.5) 2 hede s = 2R
a j
Now we put S,; = 3, h°;;h%;;. Then by (1.5) we have
DI0Selh = L (ke )R I) = 3 (R
a,f .

a,8,1,] 1,7,k,1
— é 7 Jt _—
= 3 W (~TJ) =S,
©,5,k,0

which means that S,, is diagonalized to the form

(Sp01 O

I T

10 Suig)

at a (fixed) point x of M, by operating an orthogonal transformation (or real
representation of a unitary transformation) to e,-part of adapted frames;
(e,) — (e, = 3 U’.e;), where U?, are constant and (‘e ) = (e;,’e,) is defined
on the domain where (e,) is defined. The eigenvalues S, are all real and
nonnegative.

Let S denote the square of the length of the second fundamental form. Then

> hR, = Y he, =8S=38, =228,
a,d5i @i = a

at x, where 'h®;;’s denote the components with respect to the new frame field

(’e,). By (1.3) and (1.4), we get

1.6) — X'k dh; =8 X hy/h /R + 25 8 — dm + 2)S

ayi,J a,b,i, 7,k
at x. Now we show that

(1'7) 8 Z /haij/hajklhbkl/hbli g 4S(LSIJ

2,7.%,1
holds at x. Since 'h°,, is symmetric in k and /, as is well known, by operating
an orthogonal transformation (or real representation of a unitary transforma-
tion) to e;-part of adapted frames: (¢;) — (*e, = > U’,e;), where U”; are con-
stant, ("h°,,) is diagonalized to the following form
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ba 0: ]

(1.8)  (*R,), = ........ , 0<A< - < 2

at the point, where *A%,,’s denote the components with respect to (*e,) =
(*e;,’e.). Then

8i ZR l*h“ij*h“jk*hbkl*hb“ =8 12 C*he )P (*h?,)?
o <4 ;J; R A0 + 22D
= 4S,;222,,f) < 45,5,
at x, where we have used

(1.9) 22,2<2022 =S5, .

Consequently, (1.6) and (1.7) imply
— DA <4 8.5, 2 S — Hm + 2)S
(1'10) a,{,j a,b a
= 4F S + AT ) — 4 3 5.S,] — 3(m + 2)S
a a a<v

(1.11) < 6(3 So)? — 3(m + 2)S = §§* — ¥(m + 2)S

at x. Since S is independent of the choice of adapted frames, and }; &°, 4h°;
is also invariant under orthogonal transformations of the adapted frames, we
have

— 2 kb < 387 — d(m + 2)S

a,t,]
on the domain where (e,) is defined. On the other hand,

(1.12) — X htdhe = Y (he)t — 34S

%, a,i, 7,k

where h°,,,’s are defined by the first equation of (2.1)(cf. [6]). Integration of
(1.12) and relations above yield the following integral inequalities:

.19 o<[ T e | J0BS —(m+ 285171
M

M a,i,j.k




634 SHUKICHI TANNO

Theorem 1. Let M be a compact complex submanifold of complex
dimension m immersed in CP™*%. Then the square S of the length of the
second fundamental form satisfies

1.14) JM[3S —(m+2I5*1 >0.

Consequently, we have

Theorem 2. Let M be a compact complex submanifold of complex
dimension m immersed in CP™*%, and assume that S < (m + 2) holds on M.

(1) If inequality holds at some point of M, then S = O.

(2) Otherwise, S = (m + 2).

Proof. If S < H#m + 2) on M, (1.14) implies S =0 on M since § is
nonnegative.

If § < 4(m + 2) on a nonempty open set W and S = $(m + 2) on the
nonempty closed set M — W, then we have S = 0 on W. This is a contradic-
tion since S is continuous.

2. Complex submanifolds with S = {(m + 2)

Let M be a compact complex submanifold of complex dimension m im-
mersed in CP™*? with S = 4(m + 2). Then we have equality in (1.9), (1.11)
and (1.13). By (1.13) and (1.11), we have

@.n - ;h“mw" ='dh*;; — Zkh",,jw",. - @h"ikwkj + ;hﬁﬁw"p =0,

(2.2) 2SS, =0.
a<ld

We consider these at an arbitrarily fixed point x as in §1. By (2.2) at most
one S, is nonvanishing. Since § = 2 37 S, = Hm + 2), changing the order if
necessary we have S,,, = #(m + 2), S, = 0 for a > n + 2. Denote by [S]
the field of operators to normal vectors such that [S1X = 37 $%,X?¢,, where
S, = 35 gvS,, and X?’s denote the components of a vector field X normal to
M. Then we see that [S =J[S]. Let Y.Z, (a > n + 2),JY,JZ, be fields
(on a domain D in M) of normal vectors such that they are orthonormal at x
and satisfy

([S]Y)I = 'é'(m + 2)Y1' s ([S]Za.)z =0.

Define E,,, and E, (a>n+2) by E,,, = [S1Y and E, = ([S] — §(m + 2))Z,
fora>n+ 2. Then E,,JE, (@ =n + 1, -- -, n + g) are differentiable. E,, ,
satisfies [S]E,., = #(m + 2)E,., on D, since ([S] — &m + 2)[S]IY =0
which follows from the fact that (# — #m + 2))z is the minimal polynomial
of [S]. Similarly, we have [S]E, = O for a > n + 2. Therefore, if we take a
sufficiently small domain D, in D, we have e,,, and Je,,, (normalizing E, ,
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and JE,,,) and e,,Je, for a > n + 2 (orthonormalizing within E,, JE, for
a > n 4 2) such that

'%(m+02) : )
.0 : 0
o -. :
0:
K N [
+m+2)
0 0. 0
0 -.
. OJ

holds on D, with respect to the new frame field (e,) which is assumed to be an
extended frame field on a domain in CP™*? containing D,.
Next, putting 2,, = A, by equality in (1.9) we have (for b = n 4+ 1)

0 1
. 0 0
0 79
A
(2.3) ) = e e :
: 0
0 . - 0
0"
_]‘
-0
0 : .0
0 "0
: A
(2’4) (*hn+q+1ﬁ)=(zk: ]ik*hn+1kj)= 0 ....... ........
L0
0 "y :
A

at x. We show that there is a local field on D, in D, of adapted frames such
that (2.3) and (2.4) hold on D,. Denote by [#] the field of linear operator such
that [A]1X = (3] A"*";X7¢;) where h™*; = 3 g*h"*?,; and X’’s denote com-
ponents of a vector field X on M. Then [A4] satisfies [kl = —J[k] and [A1[A]
= J[h][A]. From (2.3) it follows that [#][#] has exactly two eigenvalues O and
A2, where 2 = (m + 2)/12 by S = 2 3 S, = 44°. Hence, similar to [S] we
have a local field (on D, in D,) of orthonormal frames e,, - - -, e,,, Je,, - - -, Je,,
such that
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[AllAle,, = 2%, , [AllhVe,, = AHe,, ,
[AllAle; = O fori=1,---.m—1.

Since (e, -+ -, €1, Je,, -+ -, Je,, _,) defines a (2m — 2)-dimensional distribu-
tion on D,, its distribution is the same as the distribution {X ; [A]X = 0}. If
we restrict [A] to the field of 2-planes spanned by (e, Je,), [#] has two eigen-
values 2 and — 2. Therefore we have a local field of frames e,,, Je, (denoted
by the same letters) such that {#]e,, = Ze,, and [h)le, = —AJe,,. We extend
(e;) on a domain in CP™*? containing D,. Summerizing, we have a local field
of adapted frames (e,) such that §,, is diagonal with nonvanishing §,,,, and
A+, h**7* . are diagonal as in (2.3), (2.4), holding on D,. From now on in
this section, we use this (e,).

InQ@l)weput(ea=n+1;i=m;jE=m j+rnandaea=n+1;i=
m4 m;j%=m,j* n). Then

2.5 wr = wrtm = 0 forj=m,j+Fm+m=n.
Since
aw™, = — 3 wm, A w4+ 07,

k

= —}_'_k‘ who A w4 L kZ; (K™, + ; (hch®,, — R ) IwE A wh

by (1.2) and (2.5), we have
O — dw’", — _l_(wm /\ wT + wntmn /\ wm+r)

for r = m on D,. Since w™ and w™*™ are nonvanishing, m == 1 gives a con-
tradiction, so that m == 1, and § = 1 and #* = 1 follow. Thus the curvature
form of M is given by

Dy =w AW W AW+ Wy AW, = (1 — 2209w A wh = dw! A wh.

which implies that the Kéahlerian manifold M is of constant curvature %, and
is therefore simply connected. Hence M is complex analytically isometric to a
1-dimensional complex quadric CQ' in CP?:. Applving E. Calabi’s rigidity
theorem [4, Theorems 9, 10], we thus have

Theorem 3. Let M be a compact complex submanifold of complex dimen-
sion m immersed in CP™*4. If § = 3(m + 2) holds on M, then m = 1 and
M is imbedded as a complex quadric CQ" in some CP* in CP'*9,

3. Scalar curvature

The scalar curvature R of a complex submanifold of complex dimension m
immersed in CP™*9 is given by (cf. K. Ogiue [14], etc.)
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3.1 R=mm+1)-—-S§.

By Theorems 1, 2, and 3, we have

Theorem 4. For a compact complex submanifold M of complex dimension
m immersed in CP™*9, the scalar curvature R of M with respect to the induced
Kdihlerian structure satisfies

(3.2) J' (3m* + 2m — 2 — 3RYm + m — R)*1 > 0 .
M

Assume that on M, R salisfies
(3.3) R>m(m+ 1) —fm+2).

(1) If the inequality in (3.2) holds at some point of M, then R =m(m + 1)
holds on M and M is imbedded as a projective subspace CP™ in CP™*2,

(2) If the equality in (3.2) holds on M, then m =1 and R =1, and M is
imbedded as a complex quadric CQ' C CP* C CP'*a,

It may be remarked that in (3.2), etc. the codimension g is not involved.

4. Holomorphic pinchings

Denote by K(e;, ¢;,) = K;; the sectional curvature for a 2-plane (e;, ¢;) (with
respect to the induced Kahlerian structure on M). Then

4.1) R=23% Z} K;s + Kio) + 23 Ko
If the holomorphic sectional curvature is §-pinched; i.e., if § < K(X,JK) < 1,
then we have (cf. M. Berger [2])

4.2) K,.+K.e>6—13% forr=s.

By noticing that the holomorphic sectional curvature of M is actually <1 (cf.
(4.7) below) and considering (4.1) and (4.2), we thus get

4.3) R>mQm —m+1).

Theorem 5. Let M be a compact complex submanifold of complex dimen-
sion m immersed in CP™*9, and assume that on M the holomorphic sectional
curvature with respect to the induced Kihlerian structure satisfies

(4.4) KX, Jx)>1-"m+2
o6m?

(1) If the inequality in (4.4) holds for some X at some point of M, then
M is imbedded as a projective subspace CP™ in CP™*9,
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(2) If the equality in (4.4) holds on M, then m = 1, K(X,JX) = %, and
M is imbedded as a complex quadric CQ' < CP: C CP'*4,

Proof. By (4.3) and (4.4) we have S < 3(m + 2). Thus we have either
M = CP™ or M = CQ". The inequality in (4.4) for some X implies K(X,JX) >}
and M = CQ', and hence M = CP™. The equality in (4 4) on M unphes
K(X,JX) #= 1 and M # CP™, and hence M = CQ".

If g = 1, then (4.4) is improved.

Theorem 6. Let M be a compact complex hypersurface immersed in
CP™*', If the holomorphic sectional curvature of M with respect to the
induced Kdhlerian structure satisfies

(4.5) KX, Jx)>1-"m+2
6m

then we have the conclusions (1), (2) of Theorem 5.
Proof. From the expression of the sectional curvature K(X, Y):

(4.6) K(X,Y) =41 +3(e(X,JXNI + Z [h (X, 0n(Y,Y) — (h*(X, Y))1,
it follows that
“4.7) KX, JX) =1—-2 Z] [« X, XD .

Since ¢ = 1, we can diagonalize (/i**';) to the form (1.8), so that K, . =
1 — 22,%. Putting K,..> &, we have 1 — 4§ > 24,%, which, together with
S =25,., =42 12 yields :

4.8) 2m(l —8) > S.

Thus ¥(m + 2) > 2m(1 — §) implies ¥(m +2) > Sford =1 + }(m + 2)/m
Then the rest of the proof is the same as that of Theorem 5.

Corollary. Let M be a compact complex hypersurface immersed in CP°.
If the holomorphic sectional curvature of M satisfies

(4.9) KX, JX) > 2/3,

then M is imbedded as a projective hypersurface CP? in CP:.
Remark. For an imbedded hypersurface “K(X,JX) > 3" is the best result
(cf. K. Ogiue [16, Theorem 3.2]). .

5. Positive curvature

By a similar technique as in the proof of Theorem 3.3 in [16], we have

Theorem 7. Let M be a compact complex hypersurface immersed in CP™*!
where m > 2. If the sectional curvature of M with respect to the induced
Kihlerian structure satisfies
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R K&V 231 - 212),
‘ 3m
then M is imbedded as a projective hypersurface CP™ in CP™*.
Proof. We first diagonalize (h"*!,)) as in (1.8), and then use (4.6) to obtain

(5.2) Kle, + e Je, —Je) = § — (37 + 29

for r +# s. By putting K(X, Y) > 6 we thus have F — 26 > 1,* + 1. According
as the dimension m is even or odd, let m = 2w or m = 2w + 1. By noticing
that 2, = min {37} < 1 — 5, we get

S=4Y 4 =4G+ D + - + Qows® + 2,01 < m(1 — 495) ,
S = 4[212 -+ (222 + 232) + -+ (22102 + 22w+12)} < m(l - 45) >

respectively. Thus m(1 — 46) < 4(m + 2) implies § < 3(m + 2) for 6 =
41 — }(m + 2)/m]. Since m > 2, Theorems 3 and 4 complete the proof.

Remarks. (i) For m = 1, Theorem 6 is vahd.

(i) (5.1) means that M is §’-pinched, &’ > 1[1 — 4(m + 2)/m]. In fact,
we have K(X,JX) < 1 by (4.7), and K(X,Y) < 1 by Theorem 8.2 of R. L.
Bishop and S. 1. Goldberg [3].

(iii) Theorem 7 is a generalization of the results of K. Nomizu [10,
Theorem 2], and K. Abe [1, Corollary 4.2.1].

6. Singular or nonsingular complex curves

Theorem 8. Let M be a compact complex curve immersed in CP'*9, If the
sectional curvature of M with respect to the induced Kdhlerian structure is
>1 and the inequality holds at some point, then M is a projective line.

Proof. This follows from Theorem 5 with m = 1.

Remark. For a compact nonsingular complex curve, Theorem 8 was
obtained by K. Nomizu and B. Smyth [11, Theorem 9] for g = 1, and by K.
Ogiue [16, Theorem 4.1].

Theorem 9. Let M be a compact complex curve immersed in CP**4, If the
sectional curvature of M with respect to the induced Kdhlerian structure
satisfies 3 < K(X,Y) < 1, then M is imbedded as a complex quadric CQ' C
CP* < CP**s,

Proof. If K(X,Y)> 1%, we have M =CP' or M =CQ'". K(X,Y) %1
implies M = CQ".

Remark. For a compact nonsingular complex curve, see [11], [16].

7. Remarks

(i) It is known that an odd-dimensional umit sphere §**!(1) (of constant
sectional curvature 1) is a circle bundle over a complex projective space CP7(4)
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(of constant holomorphic sectional curvature 4) (i.e., Hopf fibration z: §¥ !
— CP7). Corresponding to the Kihlerian structure on CP’(4) we have a
Sasakian structure on S¥ 7'(1).

For a compact complex submanifold M of complex dimension m immersed
in CP7'(4) (r = m + gq) we have an invariant Sasakian submanifold »~'M in
S$*7*1(1) of real dimension u = 2m -+ 1. Since invariant submanifolds are
minimal (cf. for example, [20]), J. Simons’ result (0.1) is applied to =~'M
and hence also to M. In the latter case, (3.3) becomes

(7.1) R>mm+ 1) —m+PH/4-1/p).
(ii) By using (3.10) in [6] K. Ogiue [14] generalized (7.1) to
(7.2) R>mm + 1) —(m+2)/4—1/p) .

(iii) (3.3) is a generalization of (7.2). Consequently (3.3) can be extended
to a proposition for an invariant Sasakian submanifold of S?7*!(1), which is
better than Theorem 4.2 in [20]. Since the scalar curvature R’ of =~M in
§°7*(1) and the scalar curvature R* of M in CP7(4) are related by R’ = R*
— (dimz"'M — 1) (cf. (5.12) in [19]), we have R’ = 4R — 2m, where R
denotes the scalar curvature of M as a submanifold of CP™ = CP7(1). There-
fore we obtain the following result:

Let N be an invariant submanifold of S**'(1) as a Sasakian manifold, let
dim N = u = 2m + 1, and assume that the scalar curvature R’ of N satisfies

(7.3) R>uu—1) —u+3).

If the inequality holds at some point of N, then R’ = u(u — 1) and N = §%(1)
in $*7*Y(1); if the equality holds on N, then u = 3.

An example of Sasakian submanifold N of dimension 3 with equality in
(7.3) is as follows: N = =z~ !1CQ! for CQ' C CP? C CP'*1,

(iv) If a compact complex submanifold M is imbedded in CP™*9, then M
is algebraic. Hence stronger results are expected. In fact, for hypersurface
M, R > m?® implies that M is a projective hypersurface in CP™*! (K. Ogiue
(151, [16D. :

(v) If the scalar curvature is constant, the best results for imbedded hyper-
surfaces are known (cf. S. S. Chern [5], S. Kobayashi [7]).
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